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Abstract—Relational subgraph analysis, e.g. finding labeled
subgraphs in a network, which are isomorphic to a template,
is a key problem in many graph related applications. It is
computationally challenging for large networks and complex
templates. In this paper, we develop SAHAD, an algorithm
for relational subgraph analysis using Hadoop, in which
the subgraph is in the form of a tree. SAHAD is able to
solve a variety of problems closely related with subgraph
isomorphism, including counting labeled/unlabeled subgraphs,
finding supervised motifs, and computing graphlet frequency
distribution. We prove that the worst case work complexity
for SAHAD is asymptotically very close to that of the best
sequential algorithm. On a mid-size cluster with about 40
compute nodes, SAHAD scales to networks with up to 9 million
nodes and a quarter billion edges, and templates with up to
12 nodes. To the best of our knowledge, SAHAD is the first
such Hadoop based subgraph/subtree analysis algorithm, and
performs significantly better than prior approaches for very
large graphs and templates. Another unique aspect is that
SAHAD is also amenable to running quite easily on Amazon
EC2, without needs for any system level optimization.

Keywords-subgraph isomorphism, frequent subgraph, motif,
graphlet frequency distribution, MapReduce, Hadoop

I. INTRODUCTION

Subgraph isomorphism is a canonical problem in several
applications, such as social network analysis [11], data
mining [18], [7], [31], [30], fraud detection [5], chemical
informatics [6], web information management [23] and
bioinformatics [13], [20], where people are interested in
finding subsets of nodes with specific labels or attributes
and mutual relationships that match a specific template. For
example, in financial networks (based on [7], [5]), in which
the nodes are banks and individuals, and edges represent
financial transactions, an investigator might be interested in
specific transaction patterns from an individual to banks,
e.g., through suspicious intermediaries to deflect attention
(see Figure 1 for an example). In many bioinformatics
applications, frequent subgraphs (referred to as “motifs”) in
protein-protein interaction networks (PPI) have been used
to characterize the network, distinguish it from random
networks and identify functional groups (e.g., [20], [9]).
Thus, as discussed in a survey by Getoor [11], general
subgraph mining poses fundamental problems in a number
of applications.

Many variants of subgraph isomorphism problems have
been studied, such as: finding the most frequent subgraph
(e.g., [17]), counting specific subgraphs (e.g., [1], [14], [32]),
detecting labeled queries, computing functions on the space
of embeddings such as graphlet frequency distribution (e.g.,
[22]). In general, these are computationally very challenging
problems. Given an arbitrary template of size k and a
graph with n nodes, the best known rigorous result for the
subgraph isomorphism problem is obtained by Eisenbrand
et al. [10] with a running time of roughly O(nωk/3) (which
improves on the naive O(nk) time), where ω denotes the
exponent of the best possible matrix multiplication algo-
rithm. If the template has an independent set of size s,
Vassilevska et al. [28] give an algorithm with an improved
running time of O(2snk−s+3kO(1)); this is improved slightly
by Kowaluk et al. [16]. When the template is a tree or has a
bounded treewidth, Alon et al. [1] develop the color coding
technique which is a randomized approximation algorithm
with running time O(k|E|2kek log (1/δ) 1

ε2 ), where ε and δ
are error and confidence parameters, respectively.
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Figure 1. Here is an application of detecting subgraph isomorphism in
financial networks (as in [7], [5]): G is an underlying graph whose nodes
represent customers (c), suspicious (s) or banks (b). The template T is
an abnormal transaction pattern, in which a customer v1 uses suspicious
intermediaries v2 and v3 to reach banks v4 and v5. The shaded subgraph
shows a matching of the abnormal pattern.

A lot of practical heuristics have also been developed
for various versions of these problems, especially for the
frequent subgraph mining problem (as discussed later in
Section II). An example is the “Apriori” method, which
uses a level-wise exploration of the template [15], [17],
for generating candidates for subgraphs at each level; these
have been made to run faster by better pruning and explo-
ration techniques, e.g., [17], [13], [30]. Other approaches



in relational databases and data mining involve queries for
specific labeled subgraphs, and have combined relational
database techniques with careful depth-first exploration, e.g.,
[25], [24], [7]. Most of these approaches are sequential, and
generally only scale to fairly small graphs and templates. It
seems that parallelism is necessary to scale to much larger
networks and templates.

In general, these approaches are notoriously hard to
parallelize as it is very difficult to decompose the task into
independent subtasks. It is not clear if candidate generation
approaches [17], [13], [30] can be parallelized and scaled to
large graphs and computing clusters. Two recent approaches
for parallel algorithms, related to this work, are [7], [32].
The approach of Bröcheler et al. [7] requires a complex
preprocessing and enumeration process, which has high end-
to-end time, while the approach of [32] involves an MPI-
based implementation with a very high communication over-
head for larger templates. Two very recent papers [26], [21]
develop MapReduce based algorithms for approximately
counting the number of triangles with a work complexity
bound of O(|E|). It still remains an open problem to de-
velop parallel algorithms for subgraph analysis with rigorous
polynomial work complexity, which are implementable on
heterogeneous computing resources. See Table I for a de-
tailed comparison between different sequential and parallel
approaches for subgraph isomorphism problems.
Our contributions. In this paper, we present SAHAD, a new
algorithm for Subgraph Analysis using Hadoop, with rigor-
ously provable polynomial work complexity for relational
subgraph isomorphism problems in massive networks, in
which the subgraph is in the form of a tree. It scales to very
large graphs, and because of the Hadoop implementation,
runs flexibly on a variety of computing resources, including
Amazon EC2 cloud. Our specific contributions are discussed
below.

1. SAHAD is the first MapReduce-based algorithm for
solving a number of problems related with relational sub-
graphs on very large networks. It supports subgraphs in
the form of any labeled tree. As discussed earlier, the only
prior Hadoop based approaches have been on triangles [27],
[21], [26] in very large networks, or more general sub-
graphs on relatively small networks [19]. Our main technical
contribution is the development of a Hadoop version of
the color coding algorithm of Alon et al. [1], [2], which
is a (sequential) randomized approximation algorithm for
subgraph counting. We prove that the work complexity of
SAHAD is O(k|EG|22kek log (1/δ) 1

ε2 ), which is more than
the running time of the sequential algorithm of [1] by just
a factor of 2k.

2. We demonstrate our results on instances of the Erdös-
Renyi random graph model and on synthetic social contact
graphs for Miami city and Chicago city (with 52.7 million
and 268.9 million edges, respectively), constructed using the
methodology of [4]. We study the performance of counting

unlabeled/labeled templates with up to 12 nodes. The total
running times for templates with 12 nodes on Miami and
Chicago networks are 15 and 35 minutes, respectively; note
that these are the total end-to-end times, and do not require
any additional pre-processing (unlike, e.g. [7]).

3. SAHAD is able to solve a variety of subgraph iso-
morphism problems, such as: (i) counting the number of
embeddings of a given labeled/unlabeled template ; (ii)
finding the most frequent subgraphs/motifs efficiently from
a given set of candidate templates; and (iii) computing
the graphlet frequency distribution. SAHAD is specifically
suitable for computing on multiple templates, since they
usually share common sub-templates such as edge, simple
path or star, etc., which are only computed once.

4. SAHAD runs easily on heterogeneous computing re-
sources, e.g., it scales well when we request up to 16
nodes on a medium size cluster with 32 cores per node.
Our Hadoop based implementation is also amenable to
running on public clouds, e.g., Amazon EC2 [3]. Except
for a 10-node template which produces extremely large
amount of data so as to incur the I/O bottle neck on the
virtual disk of EC2, the performance of SAHAD on EC2 is
almost the same as on the local cluster. This would enable
researchers to perform useful queries even if they do not
have access to large resources, such as those required to
run previously proposed querying infrastructures. We believe
this aspect is unique to SAHAD and lowers the barrier-to-
entry for scientific researchers to utilize advanced computing
resources.
Organization. We discuss the related work and some back-
ground in Sections II and III, respectively. The sequential
color coding algorithm of [1] is discussed in Section IV. We
discuss the details of SAHAD and its analysis in Section V,
and extensions to other kinds of problems in Section VI.
Our experimental results are discussed in Section VII, and
we conclude the paper in Section VIII.

II. RELATED WORK

A variety of different algorithms and heuristics have been
developed for different domain specific versions of sub-
graph isomorphism problems. One version involves finding
frequent subgraphs, and many approaches for this problem
use the Apriori-method from frequent item set mining [15],
[17], [11]. These approaches involve candidate generation
during a breadth first search on the subset lattice and a
determination of the support of item sets by subset test. A
variety of optimizations have been developed, e.g., using a
DFS order to avoid the cost of candidate generation [13],
[30] or pruning techniques, e.g., [17]. A related problem
is that of computing the “graphlet frequency distribution”,
which generalizes the degree distribution [22].

Another class of results for frequent subgraph finding is
based on the powerful technique of “color coding” (which
also forms the basis of our paper), e.g., [1], [14], [32], which



Table I
SOME OF THE REPRESENTATIVE RESEARCHES ON SUBGRAPH ISOMORPHISM PROBLEMS

Problem Reference Network Template Running Time Computing Environment
Subgraph enumeration [12] PPIs with 103 nodes 7 nodes 1-2 hours sequential
Graphlet frequency distri-
bution

[22] PPIs with 103 nodes 29 graphlets with
3 to 5 nodes each

up to 10 days sequential

Motif counting [1] PPIs with 103 nodes treelets with up to
10 nodes

12 hours parallel on 8 cores

Labeled subgraph query-
ing

[7] social network with 778M
edges

upto 6 nodes/23
edges

10.5 hours to parti-
tion, seconds to query

16 nodes with 8 core on each

subgraph isomorphism
problems

SAHAD synthetic networks with
up to 269M edges

treelets with up to
12 nodes

less than 35 minutes 32 cores per node, up to 16
nodes

has been used for approximating the number of embeddings
of templates that are trees or “tree-like”.

In [1], Alon et al. use color coding to compute the
distribution of treelets with sizes 8, 9 and 10, on the protein-
protein interaction networks of Yeast. The color coding
technique is further explored and improved in [14], in terms
of worst case performance and practical considerations. E.g.,
by increasing the number of colors, they speed up the color
coding algorithm with up to 2 orders of magnitude. They
also reduce the memory usage for minimum weight paths
finding, by carefully removing unsatisfied candidates, and
reducing the color set storage.

Most of these approaches in bioinformatics applications
involve small templates, and have only been scaled to
relatively small graphs with at most 104 nodes (apart from
[32], which shows scaling to much larger graphs by means
of a parallel implementation). Other settings in relational
databases and data mining have involved queries for specific
labeled subgraphs. Some of the approaches for these prob-
lems have combined relational database techniques, based on
careful indexing and translation of queries, with such depth-
first exploration strategy that is distributed over different
partitions of the graph e.g., [25], [24], [7], and scale to very
large graphs. For instance, Bröcheler et al. [7] demonstrate
queries with up to 7-node templates on graphs with over half
a billion edges, by carefully partitioning the massive network
using minimum edge cuts, and distributing the partitions on
15 computing nodes.

MapReduce/Hadoop has become a popular approach for
parallel computing, and graph algorithms (e.g., [27], [21],
[26], [19] for subgraph enumeration) are being developed
using this approach. Among these, [27], [21], [26] develop
algorithms for enumerating triangles and give worst case
O(|E|) work complexity bounds for this problem, using
Hadoop. Liu et al. [19] develop heuristics based on MapRe-
duce for subgraph isomorphism, but only scale to moder-
ate size graphs. Developing Hadoop based algorithms for
enumeration of subgraphs other than triangles with rigorous
bounds is an open problem.

III. BACKGROUND

A. Labeled subgraph isomorphism problems and extensions

We consider labeled graphs G = (VG, EG, L, �G), where
VG and EG are the sets of nodes and edges, L is a set
of labels and �G : V → L is a labeling on the nodes. A
graph H = (VH , EH , L, �H) is a non-induced subgraph of
G if we have VH ⊆ VG and EH ⊆ EG. We say that a
template graph T = (VT , ET , L, �T ) is isomorphic to a non-
induced subgraph H = (VH , EH , L, �H) of G if there exists
a bijection f : VT → VH such that: (i) for each (u, v) ∈
ET , we have (f(u), f(v)) ∈ EH , and (ii) for each v ∈
VT , we have �T (v) = �H(f(v)). We also call H a non-
induced embedding of T , e.g., Figure 1 shows a non-induced
embedding of template T . In this paper, we assume T is a
tree.

We consider the following variations of subgraph iso-
morphism problems: (i) Subgraph Counting: this is the
most common problem in subgraph mining. The problem
is to count the number of embeddings of a given template
T in a network G; (ii) Supervised Motif Finding: this
problem involves counting the number of embeddings of
multiple subgraphs and finding the ones with abnormal
higher frequencies than those in random networks; (iii)
Graphlet Frequency Distribution: this is an extension of
degree distribution, and describes the number of nodes that
have the same number of “graphlet” adjacent to them, where
graphlet is an alias for template, or a treelet in this paper.

Let emb(T, G) denote the number of all embeddings of
template T in graph G, we say that an algorithm A produces
an (ε, δ)-approximation to emb(T, G), if the estimate Z pro-
duced byA satisfies: Pr[|Z−emb(T, G)| > ε·emb(T, G)] ≤
2δ; in other words, A is required to produce an estimate that
is close to emb(T, G), with high probability.

B. MapReduce and Hadoop

MapReduce is an emerging computation model. It breaks
a problem into distinct map tasks for distribution to mul-
tiple computing entities, and reduce tasks for merging the
results of individual computing entities to produce the final
result [8]. Users employ the model by defining application
specific map and reduce functions, and the framework then



takes care of managing and allocating appropriate resources
to perform the tasks.

The MapReduce model works with data expressed as key-
value pairs < k, v >. An application first takes < k1, v1 >
pairs as input to the map function, in which one or more
< k2, v2 > pairs are produced for each input pair. Then
the MapReduce re-organizes all < k2, v2 > pairs and puts
together all v2s that are associated with the same k2, which
are then processed by a reduce function.

The MapReduce model requires that input data be di-
vided into small independent pieces that are processed
independently in parallel without communication with other
tasks. Provided a suitable large-scale problem, the level
of parallelism is only limited by available resources, i.e.,
resources can be fully utilized. New MapReduce-friendly
algorithms can be designed for many problems via innova-
tive partitioning or hierarchical approaches, as is the case in
this paper.

Hadoop [29] is an open-sourced implementation of
MapReduce. Due to the reliability and scalability in handling
vast amount of computation in parallel, Hadoop is becoming
a de facto solution for large parallel computing tasks. In
addition to supporting MapReduce, Hadoop features in the
Hadoop Distributed File System(HDFS), which provides
more data locality and reliability.

IV. THE SEQUENTIAL ALGORITHM: COLOR CODING

We first briefly discuss the main ideas of the (sequential)
color coding technique of [2], to make the discussion of the
parallel Hadoop version easier. As discussed in Section III,
the goal is to count the number of embeddings of template
T in graph G. The color coding technique consists of the
following two key ideas: (i) we consider a coloring of G
using k colors, where k ≥ |VT |, and compute the number
of “colorful” embeddings of T in G (where a colorful
embedding is one in which each node has a distinct color)—
the main insight is that this problem can be solved by
dynamic programming (in contrast to the original problem
of counting all embeddings), and (ii) if the coloring of G is
done randomly, the expected number of colorful embeddings

equals the total number of embeddings times
m!( k

m)
km .

Following the notation in [1], we pick a node ρ as the
root of T , and let T (ρ) to be the rooted tree. We define
C(v, Ti(ρi), Si) to be the number of colorful embeddings
of Ti with node v ∈ VG mapped to the root ρi, and using
the color set Si, where |VTi | = |Si|. Figure 2 shows an
example of the quantities C(v, Ti(ρi), Si), and a recurrence
relation for computing them, using the counts corresponding
to smaller trees. The complete algorithm (described below)
involves (i) partitioning the template into sub-templates, and
(ii) a dynamic program to compute the colorful counts.

1) Partitioning the template: The template is partitioned
into sub-templates using Algorithm 1 and illustrated in the
example in Figure 3. We denote the set of template T and

Figure 2. The example shows one step of the dynamic programming
in color coding. T in Figure 1 is split into T′ and T ′′. To count
C(w1, T (v1), S), or the number of embeddings of T (v1) rooted at w1,
using color set S = {red, yellow, blue, purple, green}, we first obtain
C(w1, T ′(v1), {r, y, b}) = 2 and C(w5, T ′′(v3), {p, g}) = 1. Then,
C(w1, T (v1), S) = C(w1, T ′(v1), {r, y, b})C(w5, T ′′(v3), {p, g}) =
2. The embeddings of T are subgraphs with nodes {w3, w4, w1, w5, w6}
and {w3, w2, w1, w5, w6}.

all of its sub-templates Ti by T . The dynamic program
computes the counts for the sub-templates in a bottom-up
manner.

Algorithm 1 Partition(T (ρ))
1: if T /∈ T then
2: if |VT | = 1 then
3: T ← T
4: else
5: Add T to T
6: Pick τ ∈ N(ρ), the set of the neighbors of ρ, and

partition T into two sub-templates by cutting the
edge (ρ, τ)

7: Let T ′ be the sub-template containing ρ (name as
active child) and T ′′ the other (name as passive
child)

8: Partition(T ′(ρ))
9: Partition(T ′′(τ))

T
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Figure 3. Here shows the template partitioning scheme discussed in
Algorithm 1. The node are labeled 1, 2 or 3. T1, . . . , T8 and T1

0 , T 2
0 , T 3

0
are the sub-templates, in which T1

0 , T 2
0 , T 3

0 are unit templates, which form
the base case. Ti uses the counts of the active child T′

i and the passive
child T ′′

i to compute its counts, which have solid and dash arrows into it,
respectively. The root of each sub-template is marked by a red circle.

2) The algorithm: The dynamic programming algorithm
is described below (refer to [1] for more details).



I. Let S = {s1, s2, ..., sk} be a set of k colors, k ≥ m,
where m = |VT |. Color each node v ∈ VG with si ∈ S,
uniformly at random.

II. Use Algorithm 1 to construct set T .
III. Perform the following dynamic program. For each node

v ∈ VG, consider sub-templates in increasing order of
size.

a. If Ti consists of a single node ρi with color si, we
let C(v, Ti(ρi), {si}) = 1 if �(v) = �(v′).

b. If Ti consists of children T ′
i , T

′′
i , for each sub-

set Si ⊆ S of size |Si| = |VTi |, we compute
C(v, Ti(ρi), Si) in the following manner:

C(v, Ti(ρi), Si) = 1
d

∑
u

∑
C(v, T ′

i (ρi), S′
i)·

C(u, T ′′
i (τi), S′′

i )
(1)

where the first summation is over all u ∈ N(v)
and the second summation is over all S ′

i, S
′′
i such

that S′
i ∩ S′′

i = ∅, S′
i ∪ S′′

i = Si. Here d is the
over-counting factor and is equal to one plus the
number of siblings of τi which are roots of subtrees
isomorphic to T ′′

i (τi).
c. Since the probability that a matched subgraph is

colorful is P =
m!(k

m)
km , we can approximate the

counts of the embeddings of T rooted at v as:

U(v, T (ρ)) = 1
P

∑
∀Sm⊆S C(v, T (ρ), Sm) (2)

d. The number of embeddings of T is computed as:

Y = 1
q

∑
∀v∈VG

U(v, T (ρ)) (3)

Here q is the number of node ρ ′ ∈ VT such that T
is isomorphic to itself when ρ is mapped to ρ ′.

IV. We repeat the above steps N = O( em log(1/δ)
ε2 )

times, and partition N samples Y1, ..., YN into t =
O(log(1/δ)) sets. Let Zj be the average of set j.
Output the median of Z1, ..., Zt.

The analysis of the above algorithm, summarized below,
follows from [1].

Theorem 4.1: For any ε, δ > 0, the above algorithm gives
an (ε, δ)-approximation to the number of embeddings of a
tree T in time O(k|EG|2kek log (1/δ) 1

ε2 ).

V. ALGORITHM SAHAD FOR LABELED SUBGRAPH

ANALYSIS

We now discuss the details of SAHAD (Algorithm 2
below), and the various jobs— “Colorer”, “Counter” and
“Analyzer”. As discussed in Section III, the input consists
of a labeled template T = (VT , ET , L, �T ) and a labeled
graph G = (VG, EG, L, �G). SAHAD is designed to solve a
variety of labeled subgraph analysis problems.

A. Overview of SAHAD and its jobs

In SAHAD, we configure a distinct Hadoop job for each
Ti ∈ T , to compute C(v, Ti(ρi), Si) for ∀v ∈ VG. There
are three types of jobs: Colorer, Counter and Analyzer.
Colorer jobs compute the above quantities for unit templates
T 1

0 , . . . , T j
0 , and Counter jobs compute those for other

templates. Counter for Ti is started as soon as the jobs for
the two children T ′

i and T ′′
i are completed. For specific Ti,

we use another job – Analyzer – to compute further results
including total counts, graphlet distributions, etc., using the
quantities C(v, Ti(ρi), Si) computed by its Counter. We
discuss each type of the job in details in the following
sections. Algorithm 2 is an overview of SAHAD.

Algorithm 2 Overview of SAHAD

1: Partition T using Algorithm 1
2: Configure Colorers for T 1

0 , . . . , T j
0 , Counters for

T, T1, . . . , Ti, and Analyzers.
3: Run Colorers for T 1

0 , . . . , T j
0 .

4: Run Counter for Ti to compute C(v, Ti(ρi), Si), if the
dependent jobs for T ′

i and T ′′
i are completed.

5: Run Analyzer to compute additional functions.

B. Colorer and color set representation

We use a 4 byte integer to represent a color set which can
store up to 32 colors. Each bit in the binary string represents
a color. Bit “1” denotes that the correspondent color exists
in the color set. With this data structure, the intersection and
union of two color sets can be easily represented by bitwise
“AND” and “OR” operations, respectively.

The Colorer job only consists of a map function. A
Colorer for T j

0 reads G from HDFS and assigns each node
v ∈ VG with a random color chosen from the color set S. It
only outputs entries for the nodes whose labels are the same
as the label of the single node ρj

0 of T j
0 .

Algorithm 3 Colorer.Mapper(line, T j
0 (ρj

0))
1: (v, NLv, l(v))← Parse(line)
2: if l(v) = l(ρj

0)) then
3: Pick si ∈ {s1, . . . , sk} uniformly at random

� Set C(v, T j
0 , {si}) = 1

4: CCPv ← {({si}, 1)}
5: Collect(key ← v, value← CCPv, NLv)

G is stored in HDFS in such a way, that each line of the
file records a node v ∈ VG, a list of its neighbor-label pairs
NLv, and l(v). Colorer.Mapper takes each line as input and
output a key-value pair for those node v whose label equals
l(ρj

0). In the output, the key is the node v, and the value is
CCPv and NLv. We hereby introduce the notation of NLv

and CCPv below:



• NLv: a set of neighbor-label pairs, {(u, l(u))|∀u ∈
N(v)}

• CCPv: a set of color count pairs,
{(Si, C(v, Ti(ρi), Si))|C(v, Ti(ρi), Si) �= 0}.

Note that in Colorer, CCPv only contains one element
({si}, 1), where si is the random color picked for v and
1 is the count of the unit template rooted at v. We don’t
record the label of the node in the output since only those
nodes that have the same label as the unit template are in
the output.

C. Counter

Counter for Ti takes (v, CCPv, NLv) for T ′
i and T ′′

i for
∀v ∈ VG as input, and outputs v, CCPv, NLv for Ti for
∀v ∈ VG, which implements the dynamic programming
in Equation 1. Counter.Mapper and Counter.Reducer are
described in Algorithm 4 and 5, respectively.

Algorithm 4 Counter.Mapper(line, Ti(ρi))
1: (v, CCPv , NLv)← Parse(line)
2: if (v, CCPv , NLv) is for T ′

i then
3: � output a single key-value pair, with key being v
4: � flag′ denotes active child
5: Collect(key ← v, value← CCPv, f lag′, NLv)
6: else
7: � output multiple key-value pairs, each with key

being a neighbor u ∈ N(v)
8: for each (u, l(u)) ∈ NLv do
9: if l(u) = l(ρ′i) then

10: � u is a potential root of T ′
i

11: � flag′′ denotes passive child
12: Collect(key ← u, value← CCPv, f lag′′)

In Algorithm 4, the map function differentiates whether
the input colorful count is from the active child T ′

i or the
passive child T ′′

i . If it is from active child, CCPv are
mapped out with the key v. Otherwise, multiple lines are
mapped out, each with a key from ∀u ∈ N(v). Then,
in Counter.Reducer, the counts of the colorful embeddings
of T ′

i rooted at v and those of T ′′
i rooted at u ∈ N(v)

are reduced together, which are finally aggregated using
Equation 1 and factorized by the over counting factor d Ti .
The output is written back to HDFS.

D. Analyzers

We use Analyzers to compute measurements that are
related with subgraph isomorphism problems, including total
counts, graphlet frequency distribution, etc. Algorithm 6 and
7 show an instance of computing the total counts of the
template’s embeddings.

Algorithm 6 computes the colorful counts of the template
T rooted at v, i.e.,

∑
∀ST⊆S C(v, T (ρ), S) and output a key-

value pair with the key as “TotalCounts”. Then the counts

Algorithm 5 Counter.Reducer(key, values)

1: CCPv ← ∅
2: activeCCPv ← ∅
3: passiveCCPv ← ∅
4: v ← key
5: for each value ∈ values do
6: data← Parse(value)
7: if data[1] = flag′ then
8: � CCPv from active child
9: activeCCPv ← data[0]

10: NLv ← data[2]
11: else
12: � CCPv from passive child, passiveCCPv con-

tains multiple CCPv from all v’s neighbors
13: passiveCCPv.append(data[0])
14: for each (Sa, Ca) ∈ activeCCPv do
15: � Ca = C(v, T ′

i , Sa)
16: for each array ∈ passiveCCPv do
17: for each (Sb, Cb) ∈ array do
18: � Cb = C(u, T ′′

i , Sb)
19: if Sa ∩ Sb = ∅ then
20: Sc ← Sa ∪ Sb

� Add C(v, T ′
i , Sa)C(u, T ′′

i , Sb) to C(v, Ti, Sc)
21: if Sc /∈ CCPv .colorset then
22: CCPv [Sc]← Ca · Cb

23: else
24: CCPv [Sc]← CCPv[Sc] + Ca · Cb

25: for Sc ∈ CCPv .colorset do
26: CCPv[Sc] = CCPv[Sc]/dTi

27: if CCPv �= ∅ then
28: Collect(key ← v, value← CCPv, NLv)

Algorithm 6 Counts-Analyzer.Mapper(line)

1: (v, CCPv , NLv)← Parse(line)
2: count← 0
3: for ∀(S, C) ∈ CCPv do
4: count = count + C
5: Collect(key ← “TotalCounts”, value← count)

are aggregated in Algorithm 7 and appropriately factored
to obtain the total counts. Refer to Section IV-2 for the
explanations on the factor q.

E. Performance analysis of SAHAD’s jobs

We discuss various bounds on the complexity of each
Hadoop jobs below.

Lemma 5.1: The sizes of the input and output of the
Colorer are both O(|EG|).

Proof: Colorer only has the Mapper. The input consists
of (v, NLv, l(v)) for ∀v ∈ VG, where the size of NLv

equals to the number of neighbors of v. Therefore, the size
of the input is O(|EG|). Similarly, the size of the output is



Algorithm 7 Counts-Analyzer.Reducer(key, values)
1: count← 0
2: k ← size of the color set
3: m← template size

4: P =
m!(k

m)
km

5: for ∀C ∈ values do
6: count = count + C
7: count = count

P ·q
8: Collect(key ← “TotalCounts”, value← count)

also O(|EG|), since it consists of < v, (CCPv , NLv) > for
∀v ∈ VG.

Lemma 5.2: For a template Ti, suppose the sizes of the
two sub-templates T ′

i and T ′′
i are m′ and m′′, respectively,

the sizes of the input, output, and work complexity corre-
sponding to a node v are given below:

• The sizes of the input and output of Counter.Mapper are
O(

(
k

m′
)
+

(
k

m′′
)
+d(v)) and O(

(
k

m′′
)
d(v)), respectively.

• The size of the input to Counter.Reducer is
O(

(
k

m′′
)
d(v)), and the work complexity is

O(
(

k
m′

)(
k

m′′
)
d(v)).

Proof: For a node v, the input to Counter.Mapper
involves the corresponding CCPvs for T ′

i and T ′′
i , and NLv,

which together have size O(
(

k
m′

)
+

(
k

m′′
)

+ d(v)). If the
input is from T ′′

i , Counter.Mapper generates multiple key-
value pairs for a node v, in which each key-value pair is
correspondent to a node u ∈ N(v). Therefore, the output
has size O(

(
k

m′′
)
d(v)).

For a given v, the input to Counter.Reducer is the com-
bination of the above, and is therefore, O(

(
k

m′′
)
d(v)). For v

and each neighbor u ∈ N(v), Counter.Reducer aggregates
every pair of (Sa, Ca) in the CCPv corresponding to v, and
(Sb, Cb) corresponding to u, which leads to a complexity of
O(

(
k

m′
)(

k
m′′

)
d(v)).

Lemma 5.3: The total work complexity of SAHAD is
O(k|EG|22kek log (1/δ) 1

ε2 ).
Proof: The overall complexity of the Colorer and

Analyzer is O(n) and O(n ·
(

k
m

)
), respectively. For each

node v and template Ti ∈ T , the work complexity of the
Counter is O(

(
k

m′
)(

k
m′′

)
d(v)). Since |T | ≤ k, the total work,

over all nodes and templates is at most

O(
∑
v,Ti

(
k

m′

)(
k

m′′

)
d(v)) = O(

∑
v

k22kd(v)) = O(k|EG|22k)

(4)

Since O(ek log (1/δ) 1
ε2 ) iterations are performed in order

to get the (ε, δ)-approximation, the total work complexity is
as shown in the lemma.

VI. EXTENSIONS OF SAHAD: VARIATIONS OF

SUBGRAPH ISOMORPHISM PROBLEMS

So far we have discussed the basic framework of SAHAD.
We have also discussed how to compute the total number
of subgraph embeddings in an instance of Analyzer given
in Section V-D. We now discuss a set of problems that
are closely related with the subgraph isomorphism problem
which can be computed by SAHAD, including finding super-
vised motif and computing graphlet frequency distribution.

Note that SAHAD is specifically suitable for computing
on multiple templates if they have common sub-templates,
since those common sub-templates only need to be com-
puted once. This is the case in many problems, where
common sub-templates such as single node, edge, or simple
paths are shared.

A. Supervised Motif Finding

Motifs of a real-world network are specific templates
whose embeddings occurring with much higher frequencies
then in random networks and are referred as building blocks
for networks. They have been found in many real-world
networks[20]. SAHAD can reduce the computational cost
for a group of templates since the common sub-templates are
only computed once, therefore is amenable to be applied in
supervised motif finding. Figure 4 shows the sub-templates’
dependency network of a group of unlabeled subgraphs.

Counts-
Analyzer

T Counts-
Analyzer

Counts-
AnalyzerCounts-

Analyzer

1
T2

T3 T4
Figure 4. Here shows the dependency network for a group of templates
from which we want to find the motif. We can obtain the counts of
the embeddings of T1, . . . , T4 in network G and a comparable random
network. By comparing the counts of a template’s embeddings in G to the
random network, we are able to find the motif.

B. Graphlet Frequency Distribution

Graphlet frequency distribution has been proposed as a
way of measuring the similarity of protein-protein networks
[22], where common properties such as degree distribution,
diameter, etc., may not suffice. Unlike “motifs”, graphlet
frequency distribution is computed on all selected small
subgraphs regardless of whether they appear frequently or
not.

Graphlet frequency distribution D(i, T ) measures the
number of nodes from which i graphlets T are touched
on. The number of graphlet touched on a single
node v can be computed using a number of counts



C(v, T (ρ1), S), C(v, T (ρ2), S), . . . , C(v, T (ρi), S). E.g., in
Figure 5, the graphlet frequency distribution of template 5-1
is computed by aggregating the counts of templates 5-1-1,
5-1-2, and 5-1-3.

3 tree-like
graphlets5-1 5-2

5-3

5-1-1

5-1-2

5-1-3

Graphlet-
Analyzer I

Graphlet-
Analyzer II

Figure 5. Here shows all the sub-templates needed for computing graphlet
frequency distribution on template 5-1, 5-2 and 5-3. E.g., for template 5-1,
one needs to obtain the counts C(v, T (ρ), ST ) chosen multiple ρs, denoted
as 5-1-1, 5-1-2 and 5-1-3. The root of a subgraph is marked red.

Algorithm 8 to 11 show the mappers and reducers for
the two jobs corresponding to computing graphlet frequency
distribution.

Algorithm 8 Graphlet-AnalyzerI.Mapper(line)

1: T ← GetTemplateName(line)

2: P =
m!(k

m)
km

3: (v, CCPv , NLv)← Parse(line)
4: count← 0
5: for ∀(s, c) ∈ CCPv do
6: count = count + c
7: count = count

P
8: Collect(key ← v, value← count)

Algorithm 9 Graphlet-AnalyzerI.Reducer(key, values)
1: count← 0
2: for ∀value ∈ values do
3: count = count + value
4: Collect(key ← v, value← count)

Algorithm 10 Graphlet-AnalyzerII.Mapper(line)

1: (v, count)← Parse(line)
2: Collect(key ← count, value← 1)

VII. EXPERIMENTS

In this section, we evaluate various aspects of SAHAD’s
performance. Our main conclusions are summarized below.

Algorithm 11 Graphlet-AnalyzerII.Reducer(key, values)
1: freq ← 0
2: for ∀value ∈ values do
3: freq = freq + 1
4: Collect(key ← key, value← freq)

Table II summarizes the different experiments we perform,
which are discussed in greater details later.
1. Approximation bounds: While the worst case bounds
on the algorithm imply O(ek log (1/δ) 1

ε2 ) rounds to
get an (ε, δ)-approximation (see Theorem 4.1 and Lemma
5.3), in practice, we find that far fewer iterations are needed.

2. System performance: We run SAHAD on a diverse
set of computing resources, including the publicly available
Amazon EC2 cloud. We find SAHAD scales well with
the number of nodes, and disk I/O is one of the main
bottlenecks. We posit that employing multiple disks per
node (a rising trend in Hadoop) or using I/O caching will
help mitigate this bottleneck and boost performance even
further.
3. Performance of SAHAD on various queries: We
evaluate SAHAD on templates with sizes ranging from
5 to 12. We find labeled queries are significantly faster
than unlabeled ones, and the overall running time is under
35 minutes for these queries on our computing cluster
(described below). We also get comparable performance on
EC2.

A. Datasets and Computing Environment

We use synthetic social contact networks for our ex-
periments from [4] for Miami and Chicago cities. We
consider demographic labels – {kid, youth, adult, senior}
(based on the age) and gender for individuals. We also run
experiments on the G(n, p) model (denoted GNP100), with
n nodes and each pair connected with probability p, and
randomly assigned node labels. Table III summarizes the
characteristics of the 3 networks.

Table III
NETWORKS USED IN THE EXPERIMENTS

Network No. of Nodes(in million) No. of Edges(in million)
Miami 2.1 52.7

Chicago 9.0 268.9
GNP100 0.1 1.0

The templates we use in the experiments are shown in
Figure 6. The templates vary in size from 5 to 12 nodes, in
which U5-1,. . .U10-1 are the unlabeled templates and L7-1
,L10-1 and L12-1 are the labeled templates. In the labels, m,
f, k, y, a and s stand for male, female, kid, youth, adult and
senior, respectively.



Table II
SUMMARY OF THE EXPERIMENT RESULTS (REFER TO SECTION VII-A FOR THE TERMINOLOGIES IN THIS TABLE)

Experiment Computing resource Template & Network Key Observations
Approximation bounds Athena U7-1 & GNP100 error well below 0.5%
Impact of the number of data nodes Athena U10-1 & Miami, GNP100 scale from 4 hours to 30 minutes with data

nodes from 3 to 13
Impact of the number of concurrent reducers Athena & EC2 U10-1 & Miami performance worsen on Athena
Impact of the number of concurrent mappers Athena & EC2 U10-1 & Miami no apparent performance change
Unlabeled/labeled templates counting Athena & EC2 templates from Figure 6 and

networks from Table III
all tasks complete in less than 35 minutes

Graphlet frequency distribution Athena U5-1 & Miami,Chicago complete in less than 35 minutes

U5-1 U5-2 U5-3 U7-1 U10-1

L7-1 L10-1

ms
ma fa

fa
my

my fy

fk
fy fy

fy

fy fa
fa fs fa

fs L12-1

mk

ma

ms mk
ms

my fk

fk

my

mk
ms

ma

Figure 6. Templates used in the experiments.

We use a computing cluster, called Athena, with 42
computing nodes and a large RAM memory footprint. Each
node has a quad-socket AMD 2.3GHz Magny Cour 8 Core
Processor, i.e., 32 cores per node or 1344 cores in total, and
64 GB RAM(12.4 TFLOP peak). The local disk available
on each node is 750GB. Therefore, we can have maximum
31.5TB storage for the HDFS. In most of our experiments,
we use up to 16 nodes, which give up to 12TB capacity
for the computation. Although the number of cores and
RAM capacity on each node can support a large number of
mappers/reducers, the availability of a single disk on each
node limits aggregate I/O bandwidth of all parallel processes
on each node. To make it worse, aggregate I/O bandwidth of
parallel processes doing sequential I/O could result in many
extra disk seeks and hurt overall performance. Therefore,
disk bandwidth is the bottleneck for more parallelism in each
node. This limitation is further discussed in section VII-C.

We also use the public Amazon Elastic Computing Cloud
(EC2) for some of our experiments. EC2 enables customers
to instantly get cheap yet powerful computing resources, and
start computing business with no upfront cost for hardware.
We allocated 4 “High-CPU Extra-Large” instances from
EC2. Each instance has 8 cores, 7 GB RAM, and two
250 GB virtual disks (Elastic Block Store Volume).

B. Approximation bounds

As discussed in Section III, the color coding algorithm
averages the estimates over multiple iterations. In Figure 7,
we show that the approximation error is below 0.5% for the
template U7-1 for the GNP100 graph, even for one iteration.
The figure also plots the results based on using more than 7
colors, which can sometimes improve the running time, as

discussed in [14]. In the rest of the experiments, we only use
the estimate from one iteration, because of this result. The
error for i iterations is computed using |(P

i Zi)/i−emb(T,G)|
emb(T,G) .
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C. Performance analysis of SAHAD

We now study how the running time is affected by the
number of total computing nodes and number of reduc-
ers/mappers per node. We carry out 3 sets of experiments:
(i) how the total running time scales with the number of
computing nodes; (ii) how the running time is affected by
varying assignment of mappers/reducers per node; and (iii)
how the sizes of the output files vary in terms of sub-
templates.

1) Varying number of computing nodes: Figure 8 shows
that the running time for Miami reduces from over 200
minutes to less than 30 minutes when the number of
computing nodes increases from 3 to 13. However, the curve
for GNP100 does not show good scaling. The reason is that
the actual computation for GNP100 only consumes a small
portion of the running time, and there are overheads from
managing the mappers/reducers. In other words, the curve
for GNP100 shows a lower bound on the running time in
SAHAD.

2) Varying number of mappers/reducers per node:
a. Varying number of reducers per node

Figure 9 and 10 show the running time on Athena when
we vary the number of reducers per node. Here we fix the
number of nodes to be 16 and the number of mappers per
node to be 4. We find that running 3 reducers concurrently
on each node minimizes the total running time. From Figure
10 we find that though increasing the number of reducers per



node can reduce the time for the Reduce stage for a single
job, the running time increases sharply in Map and Shuffle
stage. As a result, the total running time increases with
the number of reducers. It is because of the I/O bottleneck
for concurrent accessing on Athena, since Athena has only
1 disk per node. This phenomenon does not show up on
EC2, as seen from Figure 14, which indicates that EC2 is
more optimized towards concurrent disk accessing for cloud
usage.
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Figure 9. Total running time ver-
sus number of reducers per node.
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b. Varying number of mappers per node
Figure 11 and 12 show the running time on Athena when

we vary the number of mappers per node while fixing the
number of reducers as 7 per node. We find that varying the
number of mappers per node does not affect the performance
of SAHAD. This is also validated in EC2, as shown in Figure
13.
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node.
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c. Reducers’ running time distribution

Figure 15, 16, 17 and 18 show the distribution of the
reducers’ running time on Athena. We observe that when we
increase the number of reducers per node, the distribution
becomes more volatile; for example, when we concurrently
run 15 reducers per node, the reducers’ completion time vary
from 20 minutes to 120 minutes. This also indicates the bad
I/O performance on Athena for concurrent accessing.
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puting node.
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puting node.

 0

 10

 20

 30

 40

 50

 60

 20  40  60  80  100  120  140

nu
m

be
r 

of
 th

e 
re

du
ce

rs

running time (min)

15 reducers on each node

Figure 18. 15 reducers per com-
puting node.

3) Sizes of the files on HDFS for each sub-template:
Figure 19 shows how the sizes of the files that store
the counts of colorful embeddings vary for different sub-
templates when we run SAHAD on U10-1. It is consistent
with the theoretical bound presented in Lemma 5.2.
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Figure 19. Size of the data for ∀Ti ∈ T . There are totally 7 templates in
T , two of which are with the same size 4.

D. Illustrative applications

In this section, we illustrate the performance on 3 different
kinds of queries. We use Athena and assign 16 nodes as
the data nodes; for each node, we assign a maximum of
4 mappers and 3 reducers per node. Our experiments on
EC2 for some of these queries are discussed later in Section
VII-E.



1. Unlabeled subgraph queries: Here we compute the
counts of templates U5-1, U7-1 and U10-1 on GNP100 and
Miami, as shown in Figure 20. We also plot how the running
time scales to different templates and networks, as shown in
Figure 21 – we observe that for unlabeled template with up
to 10 nodes on the Miami graph, SAHAD runs in less than
25 minutes.
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Figure 21. Running time for
counting unlabeled subgraph in
GNP100 and Miami.

2. Labeled subgraph queries: Here we count the total
number of embeddings of template L7-1, L10-1 and L12-1 in
Miami and Chicago. Figure 23 shows that the running time
for counting templates up to 12 nodes is around 15 minutes
on Miami, less than 35 minutes needed for Chicago. The
running time is much less for the labeled subgraph queries
than that for the unlabeled subgraph queries. It is due to the
fact that that labeled templates have much less number of
embeddings due to the label constraints.
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Figure 22. The counts of labeled
templates in Miami and Chicago.
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3. Computing graphlet frequency distribution: Figure
24 and 25 show the graphlet frequency distribution of the
networks of Miami and Chicago, respectively. The template
is U5-1. It takes 15 minutes and 35 minutes to compute
graphlet frequency distribution on Miami and Chicago,
respectively.

E. SAHAD on Amazon EC2

On EC2, we run unlabeled and labeled subgraph queries
on Miami and GNP100 for templates U5-1, U7-1, U10-1,
L7-1, L10-1 and L12-1. We use the same 4 EC2 instances as
discussed previously, and each node runs up to a maximum
of 2 mappers and 8 reducers concurrently. As shown in
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Figure 24. Graphlet frequency
distribution of Miami.
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Figure 26 and 27, the running time on EC2 is comparable
to that on Athena, except for U10-1 on Miami, which takes
roughly 2.5 hours to finish on EC2, but only 25 minutes
on Athena. This is because for such a large template and
graph as large as Miami, input/output data as well as the I/O
pressure on disks are tremendous. EC2 uses virtual disks as
local storage, which hurt overall performance when dealing
with such a large amount of data.
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VIII. CONCLUSION

In this paper, we develop SAHAD, an algorithm for a
broad class of subgraph isomorphism problems in very large
networks involving queries in the form of trees. It is the
first such MapReduce based algorithm with work complexity
asymptotically close to the best sequential algorithm of
[1]. SAHAD scales well to very large templates (up to
size 12) on very large graphs (with over 500M edges) and
on very diverse computing resources, especially including
the Amazon EC2. We find the disk I/O to be the main
bottleneck in scaling SAHAD to much larger instances, and
we posit that employing multiple disks per node (a rising
trend in Hadoop) or using I/O caching will help mitigate
this bottleneck and boost performance even further.
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