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Abstract
In the era of bigdata, we are deluged with massive graph data
emerged from numerous social and scientific applications. In
most cases, graph data are generated as lists of edges (edge
list), where an edge denotes a link between a pair of enti-
ties. However, most of the graph algorithms work efficiently
when information of the adjacent nodes (adjacency list) for
each node are readily available. Although the conversion from
edge list to adjacency list can be trivially done on the fly for
small graphs, such conversion becomes challenging for the
emerging large-scale graphs consisting billions of nodes and
edges. These graphs do not fit into the main memory of a sin-
gle computing machine and thus require distributed-memory
parallel or external-memory algorithms.

In this paper, we present efficient MPI-based distributed
memory parallel algorithms for converting edge lists to adja-
cency lists. To the best of our knowledge, this is the first work
on this problem. To address the critical load balancing issue,
we present a parallel load balancing scheme which improves
both time and space efficiency significantly. Our fast paral-
lel algorithm works on massive graphs, achieves very good
speedups, and scales to large number of processors. The al-
gorithm can convert an edge list of a graph with 20 billion
edges to the adjacency list in less than 2 minutes using 1024
processors. Denoting the number of nodes, edges and proces-
sors by n, m, and P, respectively, the time complexity of our
algorithm is O(m

P + n+P) which provides a speedup factor
of at least Ω(min{P,davg}), where davg is the average degree
of the nodes. The algorithm has a space complexity of O(m

P ),
which is optimal.

1. INTRODUCTION
Graph (network) is a powerful abstraction for represent-

ing underlying relations in large unstructured datasets. Exam-
ples include the web graph [11], various social networks, e.g.,
Facebook, Twitter [17], collaboration networks [19], infras-
tructure networks (e.g., transportation networks, telephone
networks) and biological networks [16].

We denote a graph by G(V,E), where V and E are the set of
vertices (nodes) and edges, respectively, with m = |E| edges
and n = |V | vertices. In many cases, a graph is specified by
simply listing the edges (u,v),(v,w), · · · ∈ E, in an arbitrary
order, which is called edge list. A graph can also be speci-
fied by a collection of adjacency lists of the nodes, where the

adjacency list of a node v is the list of nodes that are adja-
cent to v. Many important graph algorithms, such as comput-
ing shortest path, breadth-first search, and depth-first search
are executed by exploring the neighbors (adjacent nodes) of
the nodes in the graph. As a result, these algorithms work
efficiently when the input graph is given as adjacency lists.
Although both edge list and adjacency list have a space re-
quirement of O(m), scanning all neighbors of node v in an
edge list can take as much as O(m) time compared to O(dv)
time in adjacency list, where dv is the degree of node v.

Adjacency matrix is another data structure used for graphs.
Much of the earlier work [3,15] use adjacency matrix A[., .] of
order n×n for a graph with n nodes. Element A[i, j] denotes
whether node j is adjacent to node i. All adjacent nodes of i
can be determined by scanning the i-th row, which takes O(n)
time compared to O(di) time for adjacency list. Further, ad-
jacency matrix has a prohibitive space requirement of O(n2)
compared to O(m) of adjacency list. In a real-world network,
m can be much smaller than n2 as the average degree of a node
can be significantly smaller than n. Thus adjacency matrix is
not suitable for the analysis of emerging large-scale networks
in the age of bigdata.

In most cases, graphs are generated as list of edges since
it is easier to capture pairwise interactions among entities in
a system in arbitrary order than to capture all interactions of
a single entity at the same time. Examples include captur-
ing person-person connection in social networks and protein-
protein links in protein interaction networks. This is true even
for generating massive random graphs [1, 14] which is useful
for modeling very large system. As discussed by Leskovec et.
al [18], some patterns only exist in massive datasets and they
are fundamentally different from those in smaller datasets.
While generating such massive random graphs, algorithms
usually output edges one by one. Edges incident on a node
v are not necessarily generated consecutively. Thus a conver-
sion of edge list to adjacency list is necessary for analyzing
these graphs efficiently.

Why do we need parallel algorithms? With unprece-
dented advancement of computing and data technology, we
are deluged with massive data from diverse areas such as
business and finance [5], computational biology [12] and so-
cial science [7]. The web has over 1 trillion webpages. Most
of the social networks, such as, Twitter, Facebook, and MSN,
have millions to billions of users [13]. These networks hardly



fit in the memory of a single machine and thus require exter-
nal memory or distributed memory parallel algorithms. Now
external memory algorithms can be very I/O intensive lead-
ing to a large runtime. Efficient distributed memory parallel
algorithms can solve both problems (runtime and space) by
distributing computing tasks and data to multiple processors.

In a sequential settings with the graphs being small enough
to be stored in the main memory, the problem of converting
an edge list to adjacency list is trivial as described in the next
section. However, the problem in a distributed-memory set-
ting with massive graphs poses many non-trivial challenges.
The neighbors of a particular node v might reside in multi-
ple processors which need to be combined efficiently. Further,
computation loads must be well-balanced among the proces-
sors to achieve a good performance of the parallel algorithm.
Like many others, this problem demonstrates how a simple
trivial problem can turn into a challenging problem when we
are dealing with bigdata.

Contributions. In this paper, we study the problem of con-
verting edge list to adjacency list for large-scale graphs. We
present MPI-based distributed-memory parallel algorithms
which work for both directed and undirected graphs. We de-
vise a parallel load balancing scheme which balances the
computation load very well and improves the efficiency of the
algorithms significantly, both in terms of runtime and space
requirement. Furthermore, we present two efficient merging
schemes for combining neighbors of a node from different
processors– message-based and external-memory merging–
which offer a convenient trade-off between space and run-
time. Our algorithms work on massive graphs, demonstrate
very good speedups on both real and artificial graphs, and
scale to a large number of processors. The edge list of a graph
with 20B edges can be converted to adjacency list in two min-
utes using 1024 processors. We also provide rigorous theo-
retical analysis of the time and space complexity of our algo-
rithms. The time and space complexity of our algorithms are
O(m

P +n+P) and O(m
P ), respectively, where n, m, and P are

the number of the nodes, edges, and processors, respectively.
The speedup factor is at least Ω(min{P,davg}), where davg is
the average degree of the nodes.

Organization. The rest of the paper is organized as fol-
lows. The preliminary concepts and background of the work
are briefly described in Section 2. Our parallel algorithm
along with the load balancing scheme is presented in Sec-
tion 3. Section 5 discusses our experimental results, and we
conclude in Section 6.

2. PRELIMINARIES AND BACKGROUND
In this section, we describe the basic definitions used in this

paper and then present a sequential algorithm for converting
edge list to adjacency list.

2.1. Basic definitions
We assume n vertices of the graph G(V,E) are labeled as

0,1,2, . . . ,n− 1. We use the words node and vertex inter-
changeably. If (u,v) ∈ E, we say u and v are neighbors of
each other. The set of all adjacent nodes (neighbors) of v ∈V
is denoted by Nv, i.e., Nv = {u ∈V |(u,v) ∈ E}. The degree of
v is dv = |Nv|.

In edge-list representation, edges (u,v) ∈ E are listed one
after another without any particular order. Edges incident to
a particular node v are not necessarily listed together. On the
other hand, in adjacency-list representation, for all v, adjacent
nodes of v, Nv, are listed together. An example of these repre-
sentations is shown in Figure 1.
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a) Example Graph

(0, 1)
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(3, 4)

b) Edege List

N0 = {1}
N1 = {0, 2, 3, 4}
N2 = {1, 3}
N3 = {1, 2, 4}
N4 = {1, 3}

c) Adjacency List

Figure 1: The edge list and adjacency list representations of
an example graph with 5 nodes and 6 edges.

2.2. A Sequential Algorithm
The sequential algorithm for converting edge list to adja-

cency list works as follows. Create an empty list Nv for each
node v, and then, for each edge (u,v) ∈ E, include u in Nv
and v in Nu. The pseudocode of the sequential algorithm is
given in Figure 2. For a directed graph, line 5 of the algorithm
should be omitted since a directed edge (u,v) doesn’t imply
that there is also an edge (v,u). In our subsequent discussion,
we assume that the graph is undirected. However, the algo-
rithm also works for the directed graph with the mentioned
modification.

This sequential algorithm is optimal since it takes O(m)
time to process O(m) edges and thus can not be further im-
proved. The algorithm has a space complexity of O(m).

For small graphs that can be stored wholly in the main
memory, the conversion in a sequential setting is trivial. How-
ever, emerging massive graphs pose many non-trivial chal-
lenges in terms of memory and execution efficiency. Such
graphs might not fit in the local memory of a single com-
puting node. Even if some of them fit in the main memory,
the runtime might be prohibitively large. Efficient parallel al-
gorithms can solve this problem by distributing computation
and data among computing nodes. We present our parallel al-
gorithm in the next section.

3. THE PARALLEL ALGORITHM
In this section, first we present the computational model

and an overview of our parallel algorithm. A detailed descrip-
tion follows thereafter.



1: for each v ∈V do
2: Nv← /0

3: for each (u,v) ∈ E do
4: Nu← Nu∪{v}
5: Nv← Nv∪{u}

Figure 2: Sequential algorithm for converting edge list to ad-
jacency list.

3.1. Computation Model
We develop parallel algorithms for message passing inter-

face (MPI) based distributed-memory parallel systems, where
each processor has its own local memory. The processors do
not have any shared memory, one processor cannot directly
access the local memory of another processor, and the proces-
sors communicate via exchanging messages using MPI con-
structs.

3.2. Overview of the Algorithm
Let P be the number of processor used in the computa-

tion and E be the list of edges given as input. Our algorithm
has two phases of computation. In Phase 1, the edges E are
partitioned into P initial partitions Ei and each processor is
assigned one such partition. Each processor then constructs
neighbor lists from the edges of its own partition. However,
edges incident to a particular node might reside in multiple
processors, which creates multiple partial adjacency lists for
the same node. In Phase 2 of our algorithms, such adjacency
lists are merged together. Now, performing Phase 2 of the al-
gorithm in a cost-effective way is very challenging. Further,
computing loads among processors in both phases need to be
balanced to achieve a significant runtime efficiency. The load
balancing scheme should also make sure that space require-
ment among processors are also balanced so that large graphs
can be processed. We describe the phases of our parallel al-
gorithm in detail as follows.

3.3. (Phase 1) Local Processing
The algorithm partitions the set of edges E into P partitions

Ei such that Ei ⊆ E,
⋃

k Ek = E for 0≤ k≤ P−1. Each parti-
tion Ei has almost m

P edges– to be exact, dm
P e edges, except for

the last partition which has slightly fewer (m− (p− 1)dm
P e).

Processor i is assigned partition Ei. Processor i then con-
structs adjacency lists Ni

v for all nodes v such that (.,v) ∈ Ei
or (v, .)∈ Ei. Note that adjacency list Ni

v is only a partial adja-
cency list since other partitions E j might have edges incident
on v. We call Ni

v local adjacency list of v in partition i. For
future reference, we define Si as the set of all such Ni

v. The
pseudocode for Phase 1 computation is presented in Figure 3.

This phase of computation has both the runtime and space
complexity of O(m

P ) as shown in Lemma 1 .

1: Each processor i, in parallel, executes the follow-
ing.

2: for (u,v) ∈ Ei do
3: Ni

v← Ni
v∪{u}

4: Ni
u← Ni

u∪{v}

Figure 3: Algorithm for performing Phase 1 computation.

Lemma 1 Phase 1 of our parallel algorithm has both the
runtime and space complexity of O(m

P ).

Proof: Each initial partition i has |Ei|= O(m
P ) edges. Execut-

ing Line 3-4 in Figure 3 for O(m
P ) edges requires O(m

P ) time.
Now the total space required for storing local adjacency lists
Ni

v in partition i is 2|Ei|= O(m
P ). �

Thus the computing loads and space requirements in Phase
1 are well-balanced. The second phase of our algorithm con-
structs the final adjacency list Nv from local adjacency lists
Ni

v from all processors i. Note that balancing load for Phase 1
doesn’t make load well balanced for Phase 2 which requires
a more involved load balancing scheme as described later in
the following sections.

3.4. (Phase 2) Merging Local Adjacency Lists
Once all processors complete constructing local adjacency

lists Ni
v, final adjacency lists Nv are created by merging Ni

v
from all processors i as follows.

Nv =
P−1⋃
i=0

Ni
v (1)

The scheme used for merging local adjacency lists has sig-
nificant impact on the performance of the algorithm. One
might think of using a dedicated merger processor. For each
node v ∈ Vi, the merger collects Ni

v from all other processors
and merges them into Nv. This requires O(dv) time for node
v. Thus the runtime complexity for merging adjacency lists of
all v ∈V is O(∑v∈V dv) = O(m) , which is at most as good as
the sequential algorithm.

Next we present our efficient parallel merging scheme
which employs P parallel mergers.

3.4.1. An Efficient Parallel Merging Scheme
To parallelize Phase 2 efficiently, our algorithm distributes

the corresponding computation disjointly among processors.
Each processor i is responsible for merging adjacency lists
Nv for nodes v in Vi ⊂V such that for any i and j, Vi∩Vj = /0

and
⋃

i Vi =V . Note that this partitioning of nodes is different
from the initial partitioning of edges. How the nodes in V is
distributed among processors crucially affect the load balanc-
ing and performance of the algorithm. Further, this partition-
ing and load balancing scheme should be parallel to ensure
the efficiency of the algorithm. Later in Section 3.5., we dis-
cuss a parallel algorithm to partition set of nodes V which



makes both space requirement and runtime well-balanced.
Once the partitions Vi are given, the scheme for parallel merg-
ing works as follows.

• Step 1: Let Si be the set of all local adjacency lists in
partition i. Processor i divides Si into P disjoint subsets
S j

i , 0≤ j ≤ P−1, as defined below.

S j
i = {Ni

v : v ∈Vj}. (2)

• Step 2: Processor i sends S j
i to all other processors j.

This step introduces non-trivial efficiency issues which
we shall discuss shortly.

• Step 3: Once processor i gets Si
j from all processors j, it

constructs Nv for all v ∈Vi by the following equation.

Nv =
⋃

k:Nk
v∈Si

k

Nk
v (3)

We present two methods for performing Step 2 of the above
scheme.
(1) Message Based Merging: Each processor i sends S j

i di-
rectly to processor j via messages. Specifically, processor i
sends |Ni

v| (with a message < v,Ni
v >) to processor j where

v ∈ Vj. A processor might send multiple lists to another pro-
cessor. In such cases, messages to a particular processor are
bundled together to reduce communication overhead. Once a
processor i receives messages < v,N j

v > from other proces-
sors, for v ∈ Vi, it computes Nv = ∪P−1

j=0 N j
v . The pseudocode

of this algorithm is given in Figure 4.

1: for each v s.t. (.,v) ∈ Ei∨ (v, .) ∈ Ei do
2: Send < v,Ni

v > to proc. j where v ∈Vj
3: for each v ∈Vi do
4: Nv = {} // empty set
5: for each < v,N j

v > received from any proc. j do
6: Nv = Nv∪N j

v

Figure 4: Parallel algorithm for merging local adjacency lists
to construct final adjacency lists Nv. A message, denoted by
< v,Ni

v >, refers to local adjacency lists of v in processor i.

(2) External-memory Merging: Each processor i writes
S j

i in intermediate disk files F j
i , one for each processor j. Pro-

cessor i reads all files F i
j for partial adjacency lists N j

v for each
v ∈ Vi and merges them to final adjacency lists using step 3
of the above scheme. However, processor i doesn’t read in
the whole file into its main memory. It only stores local adja-
cency lists N j

v of a node v at a time, merges it to Nv, releases
memory and then proceeds to merge the next node v+1. This
works correctly since while writing S j

i in F j
i , local adjacency

lists Ni
v are listed in the sorted order of v. External-memory

merging thus has a space requirement of O(maxv dv). How-
ever, the I/O operation leads to a higher runtime with this

method than message-based merging, although the asymp-
totic runtime complexity remains the same. We demonstrate
this space-runtime tradeoff between these two method exper-
imentally in Section 5.

The runtime and space complexity of parallel merging de-
pends on the partitioning of V . In the next section, we discuss
the partitioning and load balancing scheme followed by the
complexity analyses.

3.5. Partitioning and Load Balancing
The performance of the algorithm depends on how loads

are distributed. In Phase 1, distributing the edges of the input
graph evenly among processors provides an even load bal-
ancing both in terms of runtime and space leading to both
space and runtime complexity of O(m

P ). However, Phase 2 is
computationally different than Phase 1 and requires different
partitioning and load balancing scheme.

In Phase 2 of our algorithm, set of nodes V is divided into
P subsets Vi where processor i merges adjacency lists Nv for
all v ∈ Vi. The time for merging Nv of a node v (referred
to as merging cost henceforth) is proportional to the degree
dv = |Nv| of node v. Total cost for merging incurred on a pro-
cessor i is Θ(∑v∈Vi dv). Distributing equal number of nodes
among processors may not make the computing load well-
balanced in many cases. Some nodes may have large degrees
and some very small. As shown in Figure 5, distribution of
merging cost (∑v∈Vi dv) across processors is very uneven with
an equal number of nodes assigned to each processor. Thus
the set V should be partitioned in such a way that the cost of
merging is almost equal in all processors.
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Figure 5: Load distribution among processors for LiveJour-
nal, Miami and Twitter before applying the load balancing
scheme. Summary of our dataset is provided in Table 2.

Let, f (v) be the cost associated to constructing Nv by re-
ceiving and merging local adjacency lists for a node v ∈ V .
We need to compute P disjoint partitions of node set V such
that for each partition Vi,

∑
v∈Vi

f (v)≈ 1
P ∑

v∈V
f (v).



Now, note that, for each node v, total size of the local adja-
cency lists received (in Line 5 in Figure 4) equals the num-
ber of adjacent nodes of v, i.e., |Nv| = dv. Merging local
adjacency lists N j

v via set union operation (Line 6) also re-
quires dv time. Thus, f (v) = dv. Now, since the adjacent
nodes of a node v can reside in multiple processors, comput-
ing f (v) = |Nv|= dv requires communication among multiple
processors. For all v, computing f (v) sequentially requires
O(m+ n) time which diminishes the advantages gained by
the parallel algorithm. Thus, we compute f (v) = dv for all
v, in parallel in O( n+m

P + c) time, where c is the communi-
cation cost. We will discuss the complexity shortly. This al-
gorithm works as follows: for determining dv for v ∈ V , in
parallel, processor i computes dv for n

P nodes v, starting from
in
P to (i+1)n

P −1. Such nodes v satisfy the equation,
⌊

v
n/P

⌋
= i.

Now, for each local adjacency list Ni
v Processors i constructed

in Phase 1, it sends di
v = |Ni

v| to processor p= v
n/P with a mes-

sage < v,di
v >. Once processor i receives messages < v,d j

v >

from other processors, it computes f (v) = dv = ∑
P−1
j=0 d j

v for

all nodes v such that
⌊

v
n/P

⌋
= i. The pseudocode of the paral-

lel algorithm for computing f (v) = dv is given in Figure 6.

1: for each v s.t. (.,v) ∈ Ei∨ (v, .) ∈ Ei do
2: di

v← |Ni
v|

3: j← v
n/P

4: Send < v,di
v > to processor j

5: for each v s.t.
⌊

v
n/P

⌋
= i do

6: dv← 0
7: for each < v,d j

v > received from any proc. j do
8: dv← dv +d j

v

Figure 6: Parallel algorithm executed by each processor i for
computing f (v) = dv.

Once f (v) is computed for all v ∈ V , we compute cumu-
lative sum F(t) = ∑

t
v=0 f (v) in parallel by using a parallel

prefix sum algorithm [4]. Each processor i stores F(t) for
nodes t, where t spans from in

P to (i+1)n
P − 1. This compu-

tation takes O( n
P + P) time. Then, we need to compute Vi

such that computation loads are well-balanced among pro-
cessors. Partitions Vi are disjoint subset of consecutive nodes,
i.e., Vi = {ni,ni +1 . . . ,n(i+1)−1} for some node ni. We call
ni start node or boundary node of partition i. Now, Vi is com-
puted in such a way that the sum ∑v∈Vi f (v) becomes almost
equal ( 1

P ∑v∈V f (v)) for all partitions i. At the end of this ex-
ecution, each processor i knows ni and n(i+1). Algorithm pre-
sented in [6] compute Vi for the problem of triangle counting.
The algorithm can also be applied for our problem to compute
Vi using cost function f (v) = dv. In summary, computing load
balancing for Phase 2 has the following main steps.

• Step 1: Compute cost f (v) = dv for all v in parallel by
the algorithm shown in Figure 6.

• Step 2: Compute cumulative sum F(v) by a parallel pre-
fix sum algorithm [4].

• Step 3: Compute boundary nodes ni for every subset Vi =
{ni, . . . ,n(i+1)−1} using the algorithms [2, 6].

Lemma 2 The algorithm for balancing loads for Phase 2 has
a runtime complexity of O( n+m

P +P+maxi Mi) and a space
requirement of O( n

P ), where Mi is the number of messages
received by processor i in Step 1.

Proof: For Step 1 of the above load balancing scheme, exe-
cuting Line 1-4 (Figure 6) requires O(|Ei|)=O(m

P ) time. The
cost for executing Line 5-6 is O( n

P ) since there are n
P nodes v

such that
⌊

v
n/P

⌋
= i. Each processor i sends a total of O(m

P )

messages since |Ei|= m
P . If the number of messages received

by processor i is Mi, then Line 7-8 of the algorithm has a
complexity of O(Mi) (we compute bounds for Mi in Lemma
3). Computing Step 2 has a computational cost of O( n

P +P)
[4]. Step 3 of the load balancing scheme requires O( n

P +P)
time [2,6]. Thus the runtime complexity of the load balancing
scheme is O( n+m

P +P+maxi Mi). Storing f (v) for n
P nodes

has a space requirement of O( n
P ). �

Lemma 3 Number of messages Mi received by proces-
sor i in Step 1 of load balancing scheme is bounded by
O(min{n,∑(i+1)n/P−1

in/P dv}).

Proof: Referring to Figure 6, each processor i computes dv

for n
P nodes v, starting from in

P to (i+1)n
P −1. For each v, pro-

cessor i may receive messages from at most (P− 1) other
processors. Thus, the number of received messages is at most
n
P × (p− 1) = O(n). Now, notice that, when all neighbors
u ∈ Nv of v reside in different partitions E j, processor i might
receive as much as |Nv|= dv messages for node v. This gives
another upper bound, Mi = O(∑

(i+1)n/P−1
in/P dv). Thus we have

Mi = O(min{n,∑(i+1)n/P−1
in/P dv}). �

In most of the practical cases, each processor receives
much smaller number of messages than that specified by the
theoretical upper bound. Now, for each node v, processor i
receives messages actually from fewer than P−1 processors.
Let, for node v, processor i receives messages from P.lv pro-
cessors, where lv is a real number (0 ≤ lv ≤ 1). Thus total
number of message received, Mi =O(∑

(i+1)n/P−1
in/P P.lv). To get

a crude estimate of Mi, let lv = l for all v. The term l can be
thought of as the average over all lv. Then Mi = O( n

P .P.l) =
O(n.l). As shown in Table 1, the actual number of messages
received Mi is up to 7× smaller than the theoretical bound.



Table 1: Number of messages received in practice compared
to the theoretical bounds. This results report maxi Mi with P=
50. Summary of our dataset is provided in Table 2.

Network n ∑

(i+1)n
P −1

in
P

dv Mi l(avg.)
Miami 2.1M 2.17M 600K 0.27
LiveJournal 4.8M 2.4M 560K 0.14
PA(5M,20) 5M 2.48M 1.4M 0.28

Lemma 4 Using the load balancing scheme discussed in this
section, Phase 2 of our parallel algorithm has a runtime com-
plexity of O(m

P ). Further, the space required to construct all
final adjacency lists Nv in a partition is O(m

P ).

Proof: Line 1-2 in the algorithm shown in Figure 4 requires
O(|Ei|)=O(m

P ) time for sending at most |Ei| edges to other
processors. Now, with load balancing, each processor re-
ceives at most O(∑v∈V dv/P) = O(m

P ) edges (Line 3-6). Thus
the cost for merging local lists N j

v into final list Nv has a run-
time of O(m

P ). Since the total size of the local and final ad-
jacent lists in a partition is O(m

P ), the space requirement is
O(m

P ). �
The runtime and space complexity of our complete parallel

algorithm are formally presented in Theorem 1.

Theorem 1 The runtime and space complexity of our paral-
lel algorithm is O(m

P +P+n) and O(m
P ), respectively.

Proof: The proof follows directly from Lemma 1, 2, 3, and
4.�

The total space required by all processors to process m
edges is O(m). Thus the space complexity O(m

P ) is optimal.
Performance gain with load balancing: Cost for merging

incurred on each processor i is Θ(∑v∈Vi dv) (Figure 4). With-
out load balancing, this cost Θ(∑v∈Vi dv) can be as much as
Θ(m) (it is easy to construct such skewed graphs) leading the
runtime complexity of the algorithm Θ(m). With load balanc-
ing scheme our algorithm achieves a runtime of O(m

P +P+
n) = O(m

P + m
davg)

, for usual case n > P. Thus, by simple alge-
braic manipulation, it is easy to see, the algorithm with load
balancing scheme achieves a Ω(min{P,davg})-factor gain in
runtime efficiency over the algorithm without load balancing
scheme. In other words, the algorithm gains a Ω(P)-fold im-
provement in speedup when davg ≥ P and Ω(davg)-fold other-
wise. We demonstrate this gain in speedup with experimental
results in Section 5.

4. DATA AND EXPERIMENTAL SETUP
We present the datasets and the specification of computing

resources used in our experiments below.
Datasets. We used both real-world and artificially gener-

ated networks for evaluating the performance of our algo-
rithm. A summary of all the networks is provided in Table

Table 2: Dataset used in our experiments. Notations K, M and
B denote thousands, millions and billions, respectively.

Network Nodes Edges Source
Email-Enron 37K 0.36M SNAP [20]
web-BerkStan 0.69M 13M SNAP [20]
Miami 2.1M 100M [9]
LiveJournal 4.8M 86M SNAP [20]
Twitter 42M 2.4B [17]
Gnp(n,d) n 1

2 nd Erdős-Réyni
PA(n,d) n 1

2 nd Pref. Attachment

2. Twitter [17], web-BerkStan, Email-Enron and LiveJour-
nal [20] are real-world networks. Miami is a synthetic, but
realistic, social contact network [6, 9] for Miami city. Net-
work Gnp(n,d) is generated using the Erdős-Réyni random
graph model [10] with n nodes and d average degree. Net-
work PA(n,d) is generated using preferential attachment (PA)
model [8] with n nodes and average degree d. Both the real-
world and PA(n,d) networks have skewed degree distribu-
tions which make load balancing a challenging task and give
us a chance to measure the performance of our algorithms in
some of the worst case scenarios.

Experimental Setup. We perform our experiments using
a high performance computing cluster with 64 computing
nodes, 16 processors (Sandy Bridge E5-2670, 2.6GHz) per
node, memory 4GB/processor, and operating system SLES
11.1.

5. PERFORMANCE ANALYSIS
In this section, we present the experimental results evalu-

ating the performance of our algorithm.

5.1. Load distribution
As discussed in Section 3.5., load distribution among pro-

cessors is very uneven without applying our load balancing
scheme. We show a comparison of load distribution on vari-
ous networks with and without load balancing scheme in Fig-
ure 7. Our load balancing scheme provides an almost equal
load among the processors, even for graphs with very skewed
degree distribution such as LiveJournal and Twitter.

5.2. Strong Scaling
Figure 8 shows strong scaling (speedup) of our algorithm

on LiveJournal, Miami and Twitter networks with and with-
out load balancing scheme. Our algorithm demonstrates very
good speedups, e.g., it achieves a speedup factor of ≈ 300
with 1024 processors for Twitter network. Speedup factors
increase almost linearly for all networks, and the algorithm
scales to a large number of processors. Figure 8 also shows
the speedup factors the algorithm achieves without load bal-
ancing scheme. Speedup factors with load balancing scheme
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Figure 7: Load distribution among processors for LiveJournal, Miami and Twitter networks by different schemes.
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Figure 8: Strong scaling of our algorithm on LiveJournal, Miami and Twitter networks with and without load balancing scheme.
Computation of speedup factors includes the cost for load balancing.

are significantly higher than those without load balancing
scheme. For Miami network, the differences in speedup fac-
tors are not very large since Miami has a relatively even de-
gree distribution and loads are already fairly balanced with-
out load balancing scheme. However, for real-world skewed
networks, our load balancing scheme always improves the
speedup quite significantly– for example, with 1024 proces-
sors, the algorithm achieves a speedup factor of 297 with
load balancing scheme compared to 60 without load balanc-
ing scheme for LiveJournal network.

5.3. Comparison between Message-based and
External-memory Merging

We compare the runtime and memory usage of our algo-
rithm with both message-based and external-memory merg-
ing. Message-based merging is very fast and uses message-
buffers in main memory for communication. On the other
hand, external-memory merging saves main memory by us-
ing disk space whereas requires large runtime for I/O opera-
tions. Thus these two methods provide desirable alternatives
to trade-off between space and runtime. However, as shown
in Table 3, message-based merging is significantly faster (up
to 20×) than external-memory merging albeit taking a little

larger space. Thus message-based merging is the preferable
method in our fast parallel algorithm.

Table 3: Comparison of external-memory (EXT) and
message-based (MSG) merging (using 50 processors).

Network Memory (MB) Runtime (s)
EXT MSG EXT MSG

Email-Enron 1.8 2.4 3.371 0.078
web-BerkStan 7.6 10.3 10.893 1.578

Miami 26.5 43.34 33.678 6.015
LiveJournal 28.7 42.4 31.075 5.112

Twitter 685.93 1062.7 1800.984 90.894
Gnp(500K, 20) 6.1 9.8 6.946 1.001

PA(5M, 20) 68.2 100.1 35.837 7.132
PA(1B, 20) 9830.5 12896.6 14401.5 1198.30

5.4. Weak Scaling
Weak scaling of a parallel algorithm shows the ability of

the algorithm to maintain constant computation time when
the problem size grows proportionally with the increasing
number of processors. As shown in Figure 9, total compu-



tation time of our algorithm (including load balancing time)
grows slowly with the addition of processors. This is expected
since the communication overhead increases with additional
processors. However, the growth of runtime of our algorithm
is rather slow and remains almost constant, the weak scaling
of the algorithm is very good.
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Figure 9: Weak scaling of our parallel algorithm. For this ex-
periment we use networks PA(x/10× 1M,20) for x proces-
sors.

6. CONCLUSION
We present a parallel algorithm for converting edge-list of

a graph to adjacency-list. The algorithm scales well to a large
number of processors and works on massive graphs. We de-
vise a load balancing scheme that improves both space effi-
ciency and runtime of the algorithm, even for networks with
very skewed degree distributions. To the best of our knowl-
edge, it is the first parallel algorithm to convert edge list to ad-
jacency list for large-scale graphs. It also allows other graph
algorithms to work on massive graphs which emerge natu-
rally as edge lists. Furthermore, this work demonstrates how
a seemingly trivial problem becomes challenging when we
are dealing with Bigdata.
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